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Abstract 

The status of glueball spectrum calculations in lattice gauge theory is briefly 
reviewed, with focus on the comparison between Monte Carlo simulations and 
small-volume analytical calculations in SU(3). The agreement gives confidence 
that the large-volume Monte Carlo results are accurate, at least in the context 
of the pure gauge theory. An overview of some of the technical questions, which 
is aimed at non-experts, serves as an introduction. 
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1 INTRODUCTION 

Glueballs are basic predictions of quantum chromodynamics (QCD). Combining almost any 
ideas on color confinement with the observation that gluons carry color leads to the conjecture 
of color singlet states formed out of the glue-the “glue balls.” On the other hand, the 
existence of glueballs is inconclusive experimentally. Typical glueball candidates include 
f0(991) [l], 7(1440), fi(1720) and the G resonances of the GAMS experiment [2]. For each 
state it is probably safe to say that its “true believers” do not yet out-number its “frowning 
skeptics.” Hence, the subject of glueballs is one that could well benefit from better and more 
reliable theoretical guidance. 

Glueball mass calculations in lattice gauge theory are not (yet) more reliable than other 
calculations. The foremost sense in which the the lattice calculations might be “better” 
is that they are done using the first principles of QCD. Unfortunately, the calculations 
summarized here leave out some of the first principles: in particular the interactions of 
gluons with quarks are neglected. Nevertheless, the glueball mass computation in pure 
SU(N) gauge theory is a necessary step in the development of numerical simulations of 
lattice gauge theory. Until lattice gauge theorists can provide a theoretically correct result 
for the pure gauge theory, it is unlikely that they will provide a correct result for full QCD. 

The presentation starts with a brief technical review, aimed at non-experts. We shall 
discuss the framework, paying attention to systematic details. We hope that this approach 
better prepares the reader for interpreting realistically results in lattice gauge theory. We 
then present a compilation of results for scalar and tensor, PC = ++ glueballs in pure SU(3) 
gauge theory. 

2 GAUGE THEORY ON THE LATTICE 

Lattice gauge theory is the only generally applicable scheme for non-perturbative calculations 
in quantum field theory. The ultraviolet divergencies are regulated by replacing (Euclidean) 
space-time with a discrete lattice. For computer simulations the “space-time” is usually a 
torus- a tinite box with periodic boundary conditions 

R’ -t T’ + Ni x NT lattice. (1) 

Writing a for the lattice spacing, L = Nsa is the physical size of the spatial volume, and, 
as always in the Euclidean formalism, the time extent T = NTIZ is related to the physical 
temperature by 0 = l/T. 

To maintain gauge invariance the path-integration variables are no longer components of 
the gauge potential A;(+), but instead parallel transporters along the links connecting two 
adjacent lattice sites: 
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+WG 
V,(z) = Pexp A,(Y)~Y,. (2) 

The gauge field interacts according to some action S with the “naive continuum limit” 

FzS = 
J 

d*zL, 12 = &xF;J2. 
LI 



Usually the Wilson plaquette action is used. 
In lattice field theory a sets the natural scale of all dimensionful quantities. If m is a 

mass, in MeV, then the lattice calculation can only determine the product ma. Mass ratios 
(mia/msa) = mi/mz are the natural predictions, and one must then choose one mass to set 
the scale before comparing with experiment. This is not cheating, because the Lagrangian 
L has one free parameter, the bare coupling 9s. The trade-off 9s for m is analogous to 
eliminating the bare coupling eo of QED in favor of the fine structure constant a = I/137. 

On the torus the rotational symmetry is reduced to cubic symmetry. (The hypercubic 
lattice also breaks the symmetry.) Hence the states are classified by cubic symmetry quantum 
numbers, rather than spin. The cubic group has only five irreducible representations, denoted 
by A,, AZ, E, Tl and T,, with dimensions 1, 1, 2, 3, and 3, respectively. For large enough Z 
(and small enough u) one expects restoration of rotational symmetry, which is signaled by 
“accidental” degeneracies of cubic multiplets. For example, a doublet in the representation 
E must combine with a triplet in the representation T2 to form the quintet of spin J = 2. To 
emphasize the need to realize rotational symmetry restoration, we shall use the cubic labels: 
A1 for the scalar, and E and Tz for the two states that ought to form the tensor. 

3 NUMERICAL WORK 

In numerical work one generates an ensemble of configurations {V,(z)}(“), n = 1,. . . , NcO~, 
distributed with weight e-‘. The path integral for a correlation function is estimated by 

C,(t) = (‘P:(t) %(O)) = -& -pt; {V,(z))‘“‘) %(O; {U,(z)}‘“‘) 
cod 

(4) 

where a, is an interpolating field operator for states with quantum numbers denoted by 7. 
Eq. (4) expresses Monte Carlo integration with importance sampling of the path integral. 
At large Euclidean times t the correlation function takes the form 

C-(t) = exp(-mt,d). (5) 

Fitting eq. (5) yields the lowest mass ml,. in the channel with T quantum numbers. 
Before meaningful numbers can be extracted, one must take several limits. We will 

discuss these limits in the order needed for a rigorous definition of the continuum quantum 
field theory. 

1. Take NeO~ + 00; in this limit the Monte Carlo integration becomes exact. The right- 
hand-side of eq. (4) yields the correct result for the Iattice theory. 

2. Take a --t 0; this is the continuum limit, but it must be approached with Z = Nra and 
T = Nra held fixed. Hence, the lattice size parameters Ns and NT must increase like 
l/a. 

3. Take Nra = T -+ co, the zero temperature limit. 

4. Take Nra = Z --t co, the infinite volume limit. 
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If carried out, Limit 1 would require an infinite amount of CPU time; Limits 2-4 would require 
an infinite amount of memory and an infinite amount of CPU time to process it. In practice 
we neither hope nor need to carry out any of these limits. The price paid is an uncertainty 
in the estimate of a physical quantity. The uncertainty from Limit 1 is statistical, because 
it decreases as l/G. The statistical error can also be reduced by variance reduction 
techniques [3]. The uncertainties of Limits 2-4 are systematic. They are best controlled by 
systematic study of a, T or Z dependence, perhaps using extrapolation. 

Here are some rules of thumb indicating when each kind of error has become tolerable: 

1. Ncod: As in all Monte Carlo integration the acceptable statistical error depends on 
the circumstances. In the context of lattice gauge theory a commendable criterion is 
to have statistical error bars small enough to analyze the systematic effects. 

2. a: When mass ratios mla/mla are a-independent for fixed L we have some confidence 
in the results; such behavior is called “scaling.” The perturbative renormalization 
group predicts 

ma = (~)tw”lexp (&) , (‘5) 

where the Pi arc the first two coefficients of the Callan-Symanzik p-function. Such 
“asymptotic scaling” behavior (would) inspire supreme confidence in the lattice results. 

3. T: The temperature should be low enough to resolve different states with the same 
quantum numbers: 

OK ma,7 - m1,r. PI 

4. L: When mass ratios are L-independent for fixed a optimists maintain that the large 
L limit has been reached. Pessimists will fit to asymptotic formulae such as 

m(co)=m(Lj[l+cocxp(-$Zm)] 

for masses [4] or 

K(w) = K(L) + & (9) 

for the (‘t Hooft) string tension [S]. Realists will continue to act like optimists until 
they acquire the computer time to act like pessimists. 

To disentangle the various effects one should look for methods with optimal signal-to-noise 
ratios. For glueball masses this means choosing a7 sensibly [3]. Once the (statistical) error 
bars are small, one should study the systematic effects by forming dimensionless ratios, for 
which a drops out. 

4 RESULTS FROM SU(3) 

Fig. 1 is compilation of for several groups’ results for the SU(3) gauge group. It is an update 
of the figure presented in ref. [16], using z~i~ = La = NsaJfT as the measure of the 
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volume. The scatter in the data points arises not only from statistical fluctuations, but also 
from variations in the lattice spacing: roughly speaking 0.12 fro 2 a 2 0.05 fm. 

There are two good reasons to measure the volume by ZJ~T rather than z,:+ = LmAt+ = 

N~am~:+. The statistical fluctuations of flare smaller than those of m,:+, as emphasized 

in ref. [12]. Also, the A:+ mass is likely significantly suppressed by lattice artifacts [Ii’] for 
the Wilson action at larger lattice spacings. Since fig. 1 attempts to disentangle statistical 
fluctuations from systematic effects of lattice spacing and volume, za seems most suitable. 

The curves are the result of analytical calculations [14] like those of refs. [15]. These 
calculations start with Liischer’s perturbatively derived effective Hamiltonian for the zero- 
momentum modes of the gauge field [la], but the spectrum is obtained non-perturbatively. 
The agreement is impressive in the region where both calculational schemes are valid. In 
SU(2) the agreement is similar, and the discrepancy is known to be caused by non-zero 
lattice spacing effects [19]. The curves in fig. 1 are significant because they argue for the 
correctness of the Monte Carlo mass ratios for small ZJ~T, inspiring confidence at larger ZJ~T 

There are several striking features of the results. First, the ratio film,:+ is surprisingly 
constant for za > 0.6. Second, for 0.2 < za < 2.0 the two multiplets that should form 
the tensor glueball are not at all degenerate. But in the region 1.8 < ZJ~T < 2.8 the mass of 
the E representation changes by a factor of two and for ze > 3 the mu++ and m,;+ agree 
within statistical errors. The crossover region is not in a surprising place, L x 1 fm, but it 
is intriguing that mE++ behaves so differently from a, m,:+ and m,:+. 

Taking z~fi > 2.6 as close enough to the infinite volume, we find averages of n/m,++ = 
0.308 f 0.020 and m2++/mo++ = 1.543 f 0.082. The subscripts now refer to spin, because 
the degenerate E and 7’2 masses suggest restoration of rotational symmetry. Setting the 
scale with fi = 420 MeV gives predictions of mo++ = 1370 f 90 MeV and mz++ = 
2115 f 125 MeV. These values are tantalizingly close to resonances reported by GAMS [2], 
but it would be imprudent to draw exciting conclusions. While fig. 1 indicates the systematic 
effects of non-zero a and finite L are under control, it says nothing about the systematic 
effect of neglecting quarks. In addition to mentioning obvious effects such as mixing and 
decay, one might comment that the string tension K is not an especially natural quantity to 
use for setting the scale in full QCD. 
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Figure 1: Plot of dimensionless ratios Ji7/ m,:+, mE++ /m,,:+ and mqt /mAy VS. I& = 

La = NsaJ1?. The symbols are asterisks from ref. [6J, a solid circle from ref. [7], open 
[Tz) and closed (K and E) squares kom ref. [g], open triangles from ref. 191, closed triangles 
from ref. [lOJ, four-pointed stars from ref. [ll], hexagons from ref. [12J, and the open circle 
(which used a MCRG improved action) from ref. 1131. The curves are analytic results 1141 
valid in small volumes [IS]. 
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